首页> 外文OA文献 >How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design
【2h】

How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design

机译:量子力学酶从酶抑制剂复合物的晶体结构衍生出的酶活性位点几何结构有多相似?酶设计的意义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Quantum mechanical optimizations of theoretical enzymes (theozymes), which are predicted catalytic arrays of biological functionalities stabilizing a transition state, have been carried out for a set of nine diverse enzyme active sites. For each enzyme, the theozyme for the rate-determining transition state plus the catalytic groups modeled by side-chain mimics was optimized using B3LYP/6–31G(d) or, in one case, HF/3–21G(d) quantum mechanical calculations. To determine if the theozyme can reproduce the natural evolutionary catalytic geometry, the positions of optimized catalytic atoms, i.e., covalent, partial covalent, or stabilizing interactions with transition state atoms, are compared to the positions of the atoms in the X-ray crystal structure with a bound inhibitor. These structure comparisons are contrasted to computed substrate–active site structures surrounded by the same theozyme residues. The theozyme/transition structure is shown to predict geometries of active sites with an average RMSD of 0.64 Å from the crystal structure, while the RMSD for the bound intermediate complexes are significantly higher at 1.42 Å. The implications for computational enzyme design are discussed.
机译:对一组九种不同的酶活性位点进行了理论酶(酶)的量子力学优化,这些酶是预测稳定过渡状态的生物学功能的催化阵列。对于每种酶,使用B3LYP / 6–31G(d)或在一种情况下使用HF / 3–21G(d)量子力学优化了决定速率的过渡态的酶和由侧链模拟物模拟的催化基团计算。为了确定该酶是否可以重现自然进化的催化几何结构,将优化的催化原子的位置(即与过渡态原子的共价,部分共价或稳定相互作用)与X射线晶体结构中原子的位置进行比较与结合的抑制剂。这些结构比较与被相同的酶残基包围的计算的底物活性位点结构形成对比。氧化酶/过渡结构显示可预测晶体结构的平均RMSD为0.64Å的活性位点的几何形状,而结合的中间配合物的RMSD则显着更高,为1.42Å。讨论了计算酶设计的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号